Technology Articles Cnn

Technology Articles Cnn – Rice is a basic top in Indonesia. Most farmers choose rice as the main harvest for agricultural lands. From the soil to the tropical climate, it occurs in Indonesia, it is suitable for rice plants. These supports include obstacles faced by farmers. Rice leaves include brown, taste, dlih bacterial leaves. The classification of these diseases can be done using the CNN (convolutionary neural network) method. So far, the detection process for leaf diseases has been made by hand. The CNN method can detect pixel images to pixel and is therefore considered effective for detecting diseases of only images. This research uses a data set of 1630 data divided into 3 disease classes. This research compares the number of events and uses the architecture of CNN EMCCIONSV3. The results of this survey show very good results with 98% with data that is not much invested.

AENI, K. (2018). Penerapan increased by system system pakar untuk diagnosis hama dan penyakit padi. Ennensif, 2 (1). https://doi.org/10.29407/intensif.v2i1.11841

Technology Articles Cnn

Technology Articles Cnn

Alidrus, S. A., Mushafa, A., & Putra, O. V. (2021). Deteksi Penyakit Pada Daun Tanaman Padi Menggunakan Convolutional Network. Senamika.

Theoretical Understanding Of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions

BARI, B. S., ISLAM, M. N., RASHID, M., HASAN, M.J., RAZMAN, M.A.M., MUSA, R.M., NASIR, A.F. A., & Majeed, A. P. P. A. (2021). A real-time approach to diagnose rice leaf disease using a deep learning-based e-CNn structure. Peerj Computer Science, 7. https://doi.org/10.7717/peerj-cs.432

Bhatt, P., Sarangi, S., Shivhare, A., Singh, D. and Capla, S. (2019). Identify diseases on cereal leaves using convolutionary neural networks and reinforcing. ICPRAM 2019 – Events of the 8th International Conference on Pattern Applications and Methods. https://doi.org/10.5220/0007687608940899

HIDAYAT, A., Darusalam, U., & Irmawati, I. (2019). Detection of cereal plant diseases using convolutionary neural network methods. ILMU KOMMUTER Under Informioni, 12 (1). https://doi.org/10.21609/jiki.v12i1.695

Ilahiyah, S., & Nilogiri, A. (2018). Implementation of Deep Learning Pada Pada Jenis Tumbuhan Berdankan Citra Daun Menggnakan Neutral. Justindo (System Dan Teknologia Informui Indonesia), 3 (2).

Brad Smith Named Anchor For Cnn Headlines Fast Channel

Islam, A., Islam, R., Haque, S. M. R., Islam, S. M. M., & Khan, M. A. I. (2021). Recognition of rice leaf disease using local threshold segment based on deep thresholds and CNN. International Journal of Intelligent Systems & Applications, 13 (5).

JINAN, A. & Hayadi, B. H. (2022). Klasifikasi Penyakit Tanaman Padi Mengunakan Convolutional Network Melanaluo Citra Daun (Multicamada Perptron). Journal of Computer and Engineering Science, 37-44.

Kómóuddin, M., Junaidi, A., & Saputra, W. A. (2022). Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network. Journal of Dinda: Data Science, Information Technology and Data Analysis, 2 (1). https://doi.org/10.20895/dinda.v2i1.341

Technology Articles Cnn

Priyangka, A. A. J. V., & Kumara, I. M. S. (2021). Classification of rice plant disease using the convolutional method of neural network. KOMPUTER LONARY: ILMIAH TEKNOLOGE INFORMASI, 12 (2). https://doi.org/10.24843/lkjiti.2021.v12.i02.p06

Powell Defends $2.5 Billion Fed Renovation In A Point-by-point Response To The Trump Administration

Rasjas, A.R., Sugiyarto, A.W., Kurniasari, Y., & Ramadhan, s.y. (2020). The details of rice plants are detected using a convolutionary neural network (CNN). International Conference on Science and Engineering, 3 https://doi.org/10.14421/icse.v3.535

Saputra, R. A., Wasiyanti, S., Supriyatna, A., & Saefudin, D.F. (2021). Convolutional Neural Network Pearapan Algoritma Dan Arsitektur Mobilenet Pada Applikasi Deteksi Penyakit Daun Padi. Swabumi, 9 (2). https://doi.org/10.31294/swabumi.v9i2.11678

Situmorang, W. & Jannah, M. (2020). Implementation Jaringan Syaraf Merepdiksi Hasil Panen Pay Pay Jati Dengan Matode. Ilmu Kommuter Dan Sistem Informas (Jikomsi), 3 (1.1), 167-175.

Sudadi, S., Sumarno, S., & Handi, W. (2015). Pengaruh Pupuk Organk Berbasis Azolla, Phospofat Alam under Abu Sekam Terhadap Hasil Padi Dan Sifat Kimia Tanah Alfisol. SAINS TANAH-JOURNAL OF SOIL SCIENCE AND THE AGROCLIMATOLOGY, 11 (2), 77-84.

Cnn Ousts Ceo Chris Licht After A Brief, Tumultuous Tenure Of A Year

Yuliany, S., & Rachman, A. N. (2022). Implementation of Deep Learning Pada Klasifikasi Hamaman Tanaman Menggunakan Convolutional Network (CNN). PERMANENT COMPUTER, 13 (1), 54-65.